

May 8-9, 2023

SERVIZIO SANITARIO REGIONALE EMILIA-ROMAGNA

EPCORITAMAB

Dr Pieternella (Elly) Lugtenburg

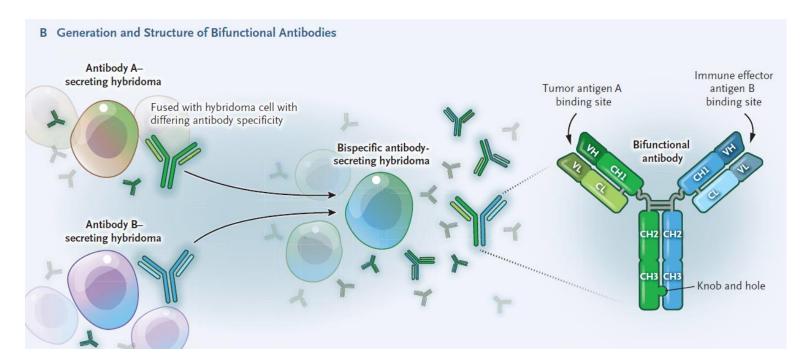
Erasmus MC Cancer Institute, University Medical Center Rotterdam, NL p.lugtenburg@erasmusmc.nl

President: Pier Luigi Zinzani

Disclosures

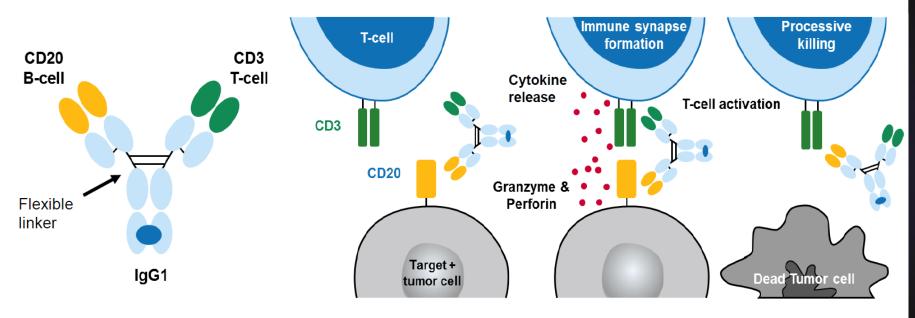
Disclosures of Pieternella Lugtenburg

Company name	Research support	Employee	Consultant	Stockholder	Speakers bureau	Advisory board	Other
Takeda	х						
Servier	х						
Genmab						х	
AbbVie						х	
Celgene						х	
Y-mAbs Therapeutics			х				
Lilly					Х		



Epcoritamab

- Introduction bispecific antibodies
- Epcoritamab preclinical data
- Epcoritamab efficacy and safety in LBCL
- Conclusions



Bispecific antibodies

Mechanism of action T-cell dependent bispecific antibodies

Redirects cytotoxicity of endogenous T cells against malignant B cells by simultaneously binding to CD3 on T cells and a tumor-associated antigen on B cells¹

Scant data on how they work!

CD3 x CD20 bispecifics for B-NHL

Product name	Schematic depiction	Format	Technology	CD20:CD3 ratio	CD3 clone	CD20 clone	Fc silencing mutations*
Mosunetuzumab ¹⁸	CD20 CD3	lgG1	Knobs-into- holes (different Fabs)	1:1	UCHT1v9 (CD3δε)	2H7 (type 1 epitope, identical to rituximab)	N297G (No FcγR binding)
Glofitamab ¹⁵	CD20	lgG1	Head-to-tail fusion	2:1	SP34- der.(CD3ε)	By-L1(type 2 epitope, identical to obinutuzumab)	IgG1-P329G-LALA (No FcγR binding)
Epcoritamab ¹⁶	CD20 CD3	lgG1	Controlled Fab-arm exchange	1:1	huCACAO (SP34- der.)(CD3ε)	7D8 (type 1 epitope, shared by ofatumomab)	L234F,L235E,D265A (No FcyR,C1q binding)
Odronexamab ¹⁷	CD20 CD3	lgG4	Heavy chains with different affinity	1:1	REG1250 (CD3δε)	3B9-10 (type 1 epitope, shared by ofatumomab)	Modified IgG4 (No FcγRIII binding)
Plamotamab ⁹⁰	CD20 CD3	lgG1	Fab-Fc x scFv-Fc	1:1	α-CD3_H1.30 (SP34- der.)(CD3ε)	C2B8_H1_L1 (type 1 epitope, shared by rituximab)	G236R, L328R (No FcyR binding)
IgM 2323 ¹⁹	COS 1 COS	lgM	IgM + modified J chain	10:1	Not reported	Not reported	No

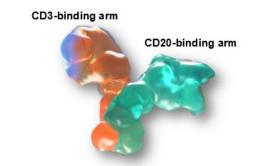
^{*} These Fc silencing mutations do not abolish the binding of BsAb to FcRn

CD3 x CD20 bispecifics for B-NHL

Product name	Schematic depiction	Format	Technology	CD20:CD3 ratio	CD3 clone	CD20 clone	Fc silencing mutations*
Mosunetuzumab ¹⁸	CD20 CD3	lgG1	Knobs-into- holes (different Fabs)	1:1	UCHT1v9 (CD3δε)	2H7 (type 1 epitope, identical to rituximab)	N297G (No FcγR binding)
Glofitamab ¹⁵	CD20 CD3	lgG1	Head-to-tail fusion	2:1	SP34- der.(CD3ε)	By-L1(type 2 epitope, identical to obinutuzumab)	lgG1-P329G-LALA (No FcγR binding)
Epcoritamab ¹⁶	CD20 CD3	lgG1	Controlled Fab-arm exchange	1:1	huCACAO (SP34- der.)(CD3ε)	7D8 (type 1 epitope, shared by ofatumomab)	L234F,L235E,D265A (No FcyR,C1q binding)
Odronexamab ¹⁷	CD20 CD3	lgG4	Heavy chains with different affinity	1:1	REG1250 (CD3δε)	3B9-10 (type 1 epitope, shared by ofatumomab)	Modified IgG4 (No FcγRIII binding)
Plamotamab ⁹⁰	CD20 CD3	lgG1	Fab-Fc x scFv-Fc	1:1	α-CD3_H1.30 (SP34- der.)(CD3ε)	C2B8_H1_L1 (type 1 epitope, shared by rituximab)	G236R, L328R (No FcγR binding)
IgM 2323 ¹⁹	C000 C000	lgM	IgM + modified J chain	10:1	Not reported	Not reported	No

^{*} These Fc silencing mutations do not abolish the binding of BsAb to FcRn

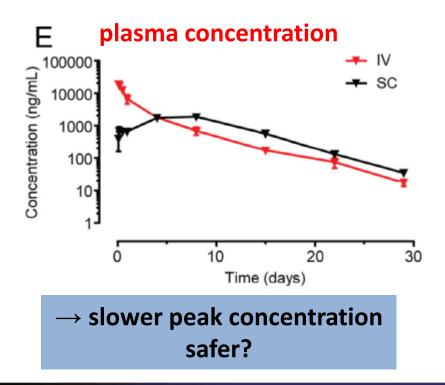
CD3 x CD20 bispecifics for B-NHL

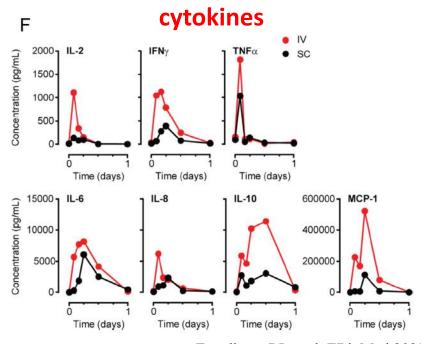

Product name	Schematic depiction	Format	Technology	CD20:CD3 ratio	CD3 clone	CD20 clone	Fc silencing mutations*
Mosunetuzumab ¹⁸	CD20 CD3	lgG1	Knobs-into- holes (different Fabs)	1:1	UCHT1v9 (CD3δε)	2H7 (type 1 epitope, identical to rituximab)	N297G (No FcγR binding)
Glofitamab ¹⁵	CD20 CD3	lgG1	Head-to-tail fusion	2:1	SP34- der.(CD3ε)	By-L1(type 2 epitope, identical to obinutuzumab)	lgG1-P329G-LALA (No FcγR binding)
Epcoritamab ¹⁶	CD20 CD3	lgG1	Controlled Fab-arm exchange	1:1	huCACAO (SP34- der.)(CD3ε)	7D8 (type 1 epitope, shared by ofatumomab)	L234F,L235E,D265A (No FcγR,C1q binding)
Odronexamab ¹⁷	CD20 CD3	lgG4	Heavy chains with different affinity	1:1	REG1250 (CD3δε)	3B9-10 (type 1 epitope, shared by ofatumomab)	Modified IgG4 (No FcγRIII binding)
Plamotamab ⁹⁰	CD20 CD3	lgG1	Fab-Fc x scFv-Fc	1:1	α-CD3_H1.30 (SP34- der.)(CD3ε)	C2B8_H1_L1 (type 1 epitope, shared by rituximab)	G236R, L328R (No FcγR binding)
IgM 2323 ¹⁹		IgM	IgM + modified J chain	10:1	Not reported	Not reported	No

^{*} These Fc silencing mutations do not abolish the binding of BsAb to FcRn

Epcoritamab

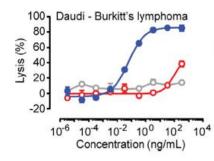
- SC-administered, bispecific CD3xCD20
- retains normal FcRn binding for a long plasma half-life
- Three point mutations were introduced in epcoritamab to ensure:
 - No Fcγ receptor binding to prevent ADCC or ADCP induction
 - No T-cell activation without binding to CD20
 - No C1q binding (no CDC induction)

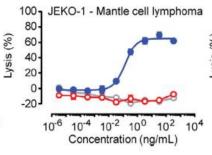

Silencing of Fc effector functions (ADCC, ADCP, CDC)

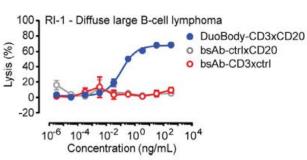

Preserved FcRn binding induces long half-life

SC delivery: May improve safety and dosing convenience

Epcoritamab subcutaneous (monkey) lower peak and later max concentration, lower peak cytokine levels

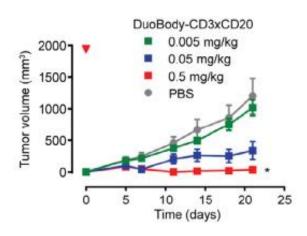


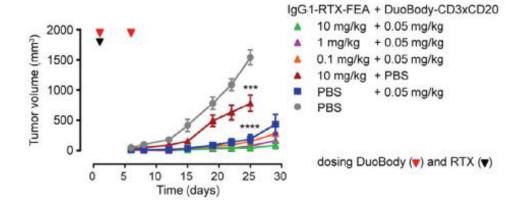




Lysis cell-lines regardless of CD20 expression

Cell line CD20-expression leve (sABC/cell)		DuoBody-CD3xCD20-induce (average EC ₅₀ [SD			oxicity		
Name	Lymphoma type	Average (x1,000)	Range (x1,000)	n tests	ng/mL	pМ	n donors
OCI-Ly7	GCB	350	209-453	6	0.531 [0.813]	3.540 [5.420]	3
Daudi	BL	331	97-752	11	0.039 [0.022]	0.260 [0.147]	11
SU-DHL-4	GCB	308	101-715	7	0.031 [0.000]	0.207 [0.000]	2
RI-1	ABC	240	150-356	4	0.066 [0.083]	0.440 [0.553]	6
JEKO-1	MCL	233	159-276	3	0.089 [0.033]	0.593 [0.220]	4
WSU-DLCL2	GCB	233	144-330	4	0.116 [0.030]	0.773 [0.200]	4
U-2932	ABC	180	85-241	4	67.604 [114.929]	450.693 [766.193]	4
OCI-Ly18	GCB	166	84-237	4	0.057 [0.042]	0.380 [0.280]	3
RC-K8	ABC	139	78-223	4	0.743 [0.673]	4.953 [4.487]	2
Z-138	MCL	90	53-114	5	0.057 [0.023]	0.380 [0.153]	2
OCI-Ly19	GCB	36	0-62	4	0.181 [0.086]	1.207 [0.573]	2
SU-DHL-8	GCB	33	0-88	8	0.120 [0.105]	0.800 [0.700]	2





Potency preserved in presence of rituximab

Xenograft models in mice

→ dose-dependent decrease in tumor volume

→ no reduction potency in presence of rituximab

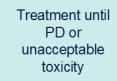
EPCORE NHL-1: Expansion cohort in R/R LBCL

Design

Dose Escalation

Dose Expansion Data Cutoff: January 31, 2022 Median follow-up: 10.7 mo

B-NHL:


- √ No DLTs
- ✓ MTD not reached
- ✓ RP2D identified
- ✓ Acceptable safety profile
- ✓ Encouraging antitumor activity

Key inclusion criteria:

- R/R CD20⁺ mature B-cell neoplasm
- ECOG PS 0-2
- Prior treatment with ≥2 prior lines of antineoplastic therapy including ≥1 anti-CD20 mAb
- Measurable disease by CT, MRI, or FDG PET-CT^a
- Prior CAR T was allowed

Epcoritamab SC RP2D 48 mg QW C1-3, Q2W C4-9, Q4W C10+

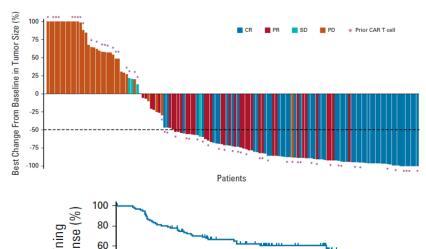
- · Epcoritamab until progression
- · Cycle 28 days
- Cycle 1 step-up dosing and corticosteroid CRS prophylaxis
- Epcoritamab was given outpatient except for the first full dose
- No initial debulking treatment was required
- · Primary endpoint: ORR by IRC
- Key secondary endpoints: DOR, TTR, PFS, OS, CR rate and safety/tolerability

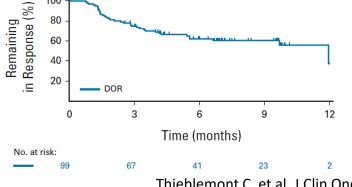
Highly refractory patient population (patient demographics)

Demographics	LBCL, N=157
Median age (range), y	64 (20-83)
≥75 y, n (%)	29 (18)
ECOG PS, n (%)	
0	74 (47)
1	78 (50)
2	5 (3)
Disease Type, n (%)	LBCL, N=157
DLBCL ^a	139 (89)
De novo	97/139 (70)
Transformed	40/139 (29)
DLBCL with DH/TH rearrangements by central FISHb	12/88 (14)
HGBCL	9 (6)
PMBCL	4 (3)
FL G3B	5 (3)
Prior Treatments	LBCL, N=157
Median time from initial diagnosis to first dose, y	1.6
Median time from end of last therapy to first dose, mo	2.4
Median prior lines of therapy (range)	3 (2-11)
≥3 Lines of therapy, n (%)	111 (71)
Primary refractory ^c disease, n (%)	96 (61)
Refractory ^c to last systemic therapy, n (%)	130 (83)
Refractory ^c to ≥2 consecutive lines of therapy, n (%)	119 (76)
Prior ASCT, n (%)	31 (20)
Prior CAR T therapy, n (%)	61 (39)
Refractory ^c to CAR T therapy	46/61 (75) Th

Philips T, et al. ASH 2022, #4251 Thieblemont C, et al. J Clin Oncol 2023

Efficacy (response)

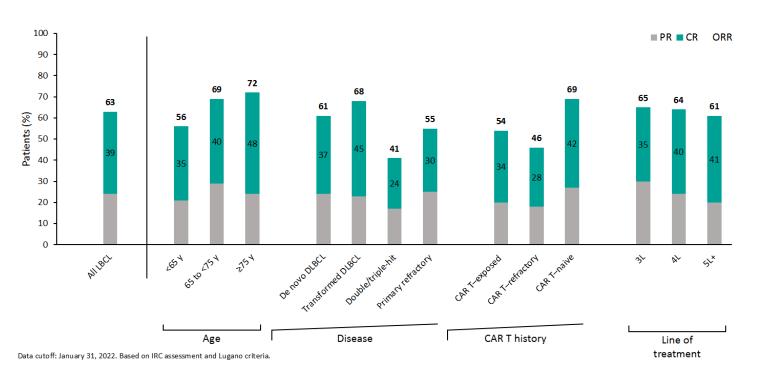

Best Overall Response, n(%) ^a	LBCL N=157
Overall response	99 (63)
CR	61 (39)
PR	38 (24)
Stable disease	5 (3)
Progressive disease	37 (24)


Kaplan–Meier Estimates, mo (range)	
Median time to response	1.4 (1.0-8.4)
Median time to CR	2.7 (1.2-11.1)
Median duration of response (months)	12 (0+ to 15.5+)

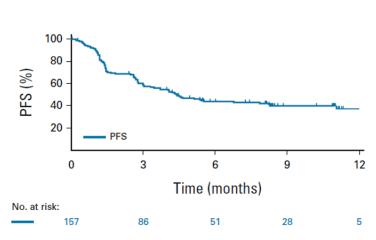
Data cutoff: January 31, 2022. Based on IRC assessment and Lugano criteria.

Median FU 10.7 months

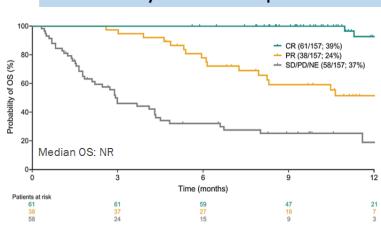
- Median DOR among those who achieved CR was NR
- An estimated 89% of CR remained in response at 9 mo



Thieblemont C, et al. J Clin Oncol 2023

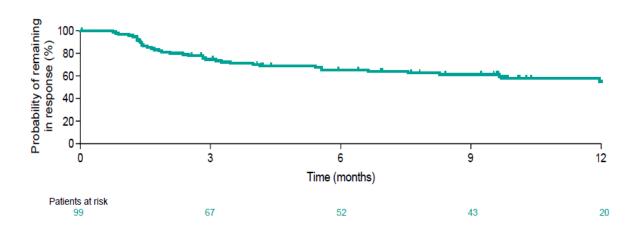

Response in subsets of LBCL patients

Efficacy: PFS and OS

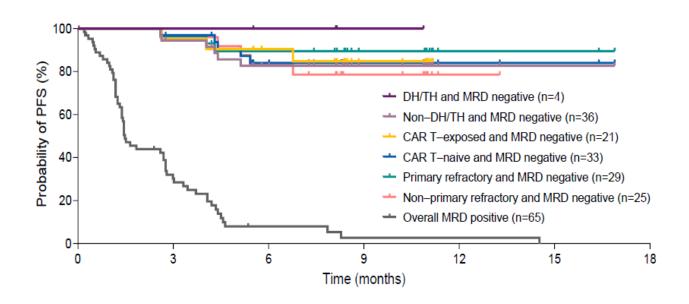

Progression free survival

- median PFS 4.4 m
- 6-months PFS 44%

Median FU 10.7 m

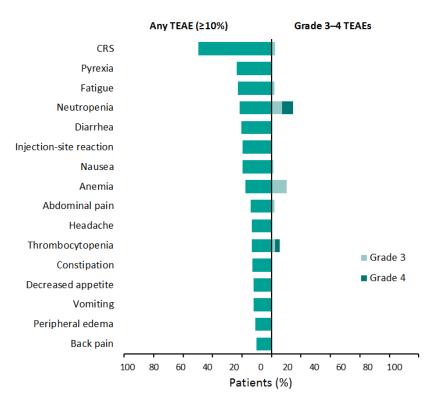

OS by best overall response

- median OS among CR was NR
- Responders OS at 6 m 70.6% and at 9 m 63.9%
- OS non-responders 2.9 m

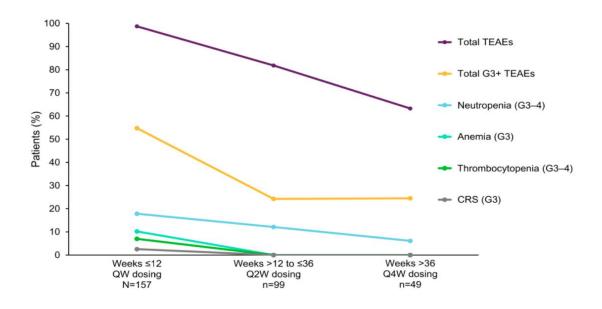

Updated Duration of Response

- As of a more recent data cutoff on June 30, 2022 (median follow-up, 15.7 mo):
 - An estimated 61% and 55% of responders remained in response at 9 and 12 mo, respectively
 - An estimated 89% and 79% of complete responders remained in response at 9 and 12 mo, respectively

MRD Negativity Was Correlated With Improved PFS



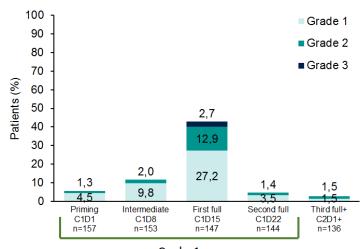
Treatment-Emergent Adverse Events (TEAEs)


Patients, n (%)	LBCL N=157
Any TEAE	156 (99.4)
Related TEAE	130 (82.8)
Grade ≥3 AE	96 (61.1)
Treatment-related	42 (26.8)
Serious AE	89 (56.7)
Treatment-related	55 (35.0)
Grade 5	9 (5.7)
Treatment-related	1 (0.6)

Data cutoff: January 31, 2022.

AEs: majority early < 12 weeks

- AEs occurred early in treatment, and incidence of AEs declined after 12 weeks
- Only 1 patient had a related serious TEAE after week 12

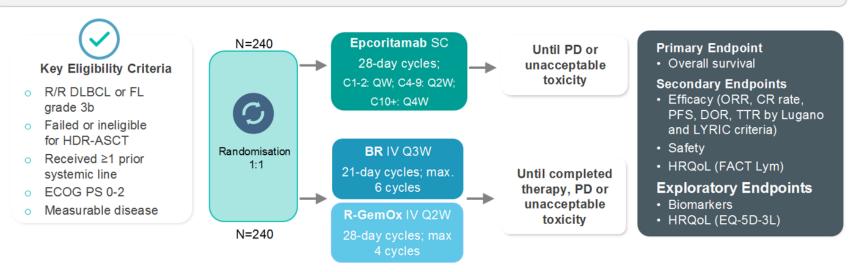


Adverse events: CRS and ICANS

	LBCL N=157
CRS events, n (%) ^a	78 (49.7)
Grade 1	50 (31.8)
Grade 2	24 (15.3)
Grade 3	4 (2.5)
Median time to onset from 1st full dose, d	0.8 (20h)
Median time to resolution from 1st full dose, d	2 (48h)
CRS treated with tocilizumab, n (%)	22 (14.0)
CRS leading to treatment discontinuation, n (%)	1 (0.6)
CRS resolution, n (%)	77 (98.7)
Leading to treatment discontinuation n (%)	1 (0.6)
ICANS, n (%)	
Grade 1	7 (4.5)
Grade 2	2 (1.3)
Grade 5	1 (0.6)

Data cutoff: January 31, 2022. Graded by Lee et al 2019 criteria

CRS Events by Dosing Period



- Cycle 1
- $\bullet\,$ CRS occurrence was predictable and primarily confined to cycle 1
- Predictable: most CRS occurred after the first full dose with a median time to onset of 20 h
- One patient had a grade 5 ICANS event that was related to epcoritamab

Epcoritamab phase 3 rr DLBCL ineligible for curative therapy

A pivotal phase 3, randomized, open-label, multicenter trial to evaluate the efficacy of epcoritamab compared to investigator's choice of chemotherapy in subjects with R/R DLBCL, who have failed or are ineligible for HDT-ASCT.

Epcoritamab ongoing DLBCL studies (some...)

Study	Phase	line	category
Epco +/- R-CHOP	Phase 3	1st line	fit
Epco +/- R-miniCHOP	Phase 3	1st line	unfit
Epco + R-DHAX/C	Phase 1-2	2nd line	transplant eligible
Epco + Gem/Ox	Phase 1-2	≥ 2 nd line	transplant ineligible
Epco + lenalidomide; lenalidomide + ibrutinib; CHPola; ibrutinib; cc99282	Phase 1-2	≥ 2 nd line	transplant ineligible

Conclusions

- Epcoritamab is a SC, off-the-shelf T-cell-engaging therapy showing powerful single-agent activity in R/R LBCL
- Epcoritamab led to deep and durable responses that correlated with robust PFS and OS
- Subgroup analyses demonstrate high rates of complete response and MRD negativity across standard and poor-prognosis subgroups
- The safety profile was manageable; TEAEs decreased over time
- With longer follow-up, durability of response was reaffirmed; the majority of complete responders remain in response